Global Trends and Recommended Configurations in Personal Breathing-Zone Nanoparticle Sampling Methods for Workers: An Updated Systematic Review (2000–2025)
DOI:
https://doi.org/10.59525/symbiohealth.1123Keywords:
Nanoparticles; Personal breathing zone; Review; Sampling methodsAbstract
This PRISMA-based systematic review synthesized 12 studies (2000–2025) on personal breathing-zone (PBZ) nanoparticle sampling among workers. The analysis categorized direct-reading devices (CPC, DiSCmini, SMPS, ELPI) and filter-based samplers (NRD, PENS, TDS) by metric, size range, and portability. Global trends indicate a post-2015 shift toward portable, multimodal instruments, though evidence gaps remain, especially in low- and middle-income countries. The combined use of the NRD (for deposition-relevant, composition-specific analysis) and CPC/DiSCmini (for real-time exposure patterns) is identified as the most comprehensive configuration. Standardized reporting of flow, background, and uncertainty, is recommended to enhance comparability and occupational health decision-making.
References
Bartley, D. L., & Vincent, J. H. (2011). Sampling conventions for estimating ultrafine and fine aerosol particle deposition in the human respiratory tract. Annals of Occupational Hygiene, 55(7), 696–709. https://doi.org/10.1093/annhyg/mer037
Brouwer, D. H., Van Duuren-Stuurman, B., Berges, M., Bard, D., Jankowska, E., Moehlmann, C., Pelzer, J., & Mark, D. (2013). Workplace air measurements and likelihood of exposure to manufactured nano-objects, agglomerates, and aggregates. Journal of Nanoparticle Research, 15(11). https://doi.org/10.1007/s11051-013-2090-7
Cena, L. G., Anthony, T. R., & Peters, T. M. (2011). A personal nanoparticle respiratory deposition (NRD) sampler. Environmental Science and Technology, 45(15), 6483–6490. https://doi.org/10.1021/es201379a
Chauhan, B. V. S., Corada, K., Young, C., Smallbone, K. L., & Wyche, K. P. (2024). Review on Sampling Methods and Health Impacts of Fine (PM2.5, ≤2.5 µm) and Ultrafine (UFP, PM0.1, ≤0.1 µm) Particles. In Atmosphere (Vol. 15, Issue 5). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/atmos15050572
Debia, M., Bakhiyi, B., Ostiguy, C., Verbeek, J. H., Brouwer, D. H., & Murashov, V. (2016). A Systematic Review of Reported Exposure to Engineered Nanomaterials. In Annals of Occupational Hygiene (Vol. 60, Issue 8, pp. 916–935). Oxford University Press. https://doi.org/10.1093/annhyg/mew041
Koehler, K. A., & Peters, T. M. (2015). New Methods for Personal Exposure Monitoring for Airborne Particles. In Current environmental health reports (Vol. 2, Issue 4, pp. 399–411). Springer. https://doi.org/10.1007/s40572-015-0070-z
Löndahl, J., Möller, W., Pagels, J. H., Kreyling, W. G., Swietlicki, E., & Schmid, O. (2014). Measurement techniques for respiratory tract deposition of airborne nanoparticles: A critical review. In Journal of Aerosol Medicine and Pulmonary Drug Delivery (Vol. 27, Issue 4, pp. 229–254). Mary Ann Liebert Inc. https://doi.org/10.1089/jamp.2013.1044
Methner, M., Beaucham, C., Crawford, C., Hodson, L., & Geraci, C. (2012). Field application of the nanoparticle emission assessment technique (NEAT): Task-based air monitoring during the processing of engineered nanomaterials (ENM) at four facilities. Journal of Occupational and Environmental Hygiene, 9(9), 543–555. https://doi.org/10.1080/15459624.2012.699388
Olesik, J. W., & Gray, P. J. (2012). Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: Determination of the number of particles and the analyte mass in each particle. Journal of Analytical Atomic Spectrometry, 27(7), 1143–1155. https://doi.org/10.1039/c2ja30073g
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Bmj, 372. https://doi.org/10.1136/bmj.n71
Silaban, A. M. M., & Tejamaya, M. (2021). Direct-Reading Methods Dalam Analisis Pajanan Nanopartikel Pada Personal Breathing Zone (Pbz) Di Indonesia : Systematic Literature Review. PREPOTIF : Jurnal Kesehatan Masyarakat, 5(2), 904–917. https://doi.org/10.31004/prepotif.v5i2.2001
Tsai, C. J., Huang, C. Y., Chen, S. C., Ho, C. E., Huang, C. H., Chen, C. W., Chang, C. P., Tsai, S. J., & Ellenbecker, M. J. (2011). Exposure assessment of nano-sized and respirable particles at different workplaces. Journal of Nanoparticle Research, 13(9), 4161–4172. https://doi.org/10.1007/s11051-011-0361-8
Tsai, C. J., Liu, C. N., Hung, S. M., Chen, S. C., Uang, S. N., Cheng, Y. S., & Zhou, Y. (2012). Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces. Environmental Science and Technology, 46(8), 4546–4552. https://doi.org/10.1021/es204580f
Tsai, C. S. J., & Theisen, D. (2018). A sampler designed for nanoparticles and respirable particles with direct analysis feature. Journal of Nanoparticle Research, 20(8). https://doi.org/10.1007/s11051-018-4307-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anita Silaban, Riri Banjarnahor

This work is licensed under a Creative Commons Attribution 4.0 International License.