Implementasi Model Yolov8 untuk Deteksi Jenis Sampah Organik dan Anorganik Berbasis Android
DOI:
https://doi.org/10.59525/aij.v5i1.655Keywords:
Detection of Objects; Application; YOLOv8; Image Processing; Deep LearningAbstract
The mismanagement of waste poses serious environmental and public health issues in Indonesia, exacerbated by the increasing volume of waste due to population growth. To address this problem, this research develops a mobile application based on Flutter, utilizing YOLOv8 object detection technology to classify organic and inorganic waste. The application aims to simplify household waste sorting, raise public awareness, and support better and more sustainable waste management. The research methodology involves using a dataset of waste images trained with the YOLOv8 algorithm via google colab. The dataset is divided into training (70%), testing (20%), and validation (10%) portions. The model training process is conducted over 25 and 50 epochs, showing improved accuracy with more epochs. At the 50th epoch, the model achieved a precision of 0.81 and a recall of 0.61, demonstrating good performance in detecting and classifying waste. The implementation of this application is expected to facilitate waste sorting, reduce environmental pollution, and improve public health. Recommendations for further development include enhancing detection accuracy, expanding the range of detectable waste types, and optimizing application performance to ensure a better user experience.
Downloads
References
Alfarizi, D. N., Pangestu, R. A., Aditya, D., Setiawan, M. A., & Rosyani, P. (2023). Penggunaan metode YOLO pada deteksi objek: Sebuah tinjauan literatur sistematis. Jurnal Artificial Intelligence dan Sistem Penunjang Keputusan, 1(1), 54–63. https://jurnalmahasiswa.com/index.php/aidanspk
Ali, M., Hunaini, F., Robandi, I., & Sutantra, N. (2015). Optimization of active steering control on vehicle with steer by wire system using Imperialist Competitive Algorithm (ICA). In 2015 3rd International Conference on Information and Communication Technology (ICoICT) (pp. 500–503). IEEE. https://doi.org/10.1109/ICoICT.2015.7231455
Alterovitz, R., Simeon, T., & Goldberg, K. (2007). The stochastic motion roadmap: A sampling framework for planning with Markov motion uncertainty. In Robotics: Science and Systems III.
Cai, X., Shuang, F., Sun, X., Duan, Y., & Cheng, G. (2022). Towards lightweight neural networks for garbage object detection. Sensors, 22(19), 1–17. https://doi.org/10.3390/s22197455
Fransisca, S., & Putri, R. N. (2019). Pemanfaatan teknologi RFID untuk pengelolaan inventaris sekolah dengan metode (R&D). Jurnal Mahasiswa Aplikasi Teknologi Komputer dan Informasi, 1(1), 72–75.
Hardianty, V., Hayati, M., & Verawati, H. (2025). Analysis Self Efficacy in Improving Work-Life Balance on Employee Performance Terms Sharia Management Perspective. Indonesian Journal of Islamic Economics and Finance, 5(1), 51–72. https://doi.org/10.37680/ijief.v5i1.6963
HR, L. A., Kesumah, F. S. D., & Huzaimah, R. F. (2025). Impact and Acceptance of Digitalization in the Indonesian Workplace. Indonesian Journal of Islamic Economics and Finance, 5(1), 1–14. https://doi.org/10.37680/ijief.v5i1.6697
Jauhariyah, N. A., Susanti, N. I., Mahmudah, M., Nurus Sofa, F. I., & Qohar, M. K. (2023). Pengembangan pemberdayaan ekonomi pesantren melalui pengelolaan sampah secara berkelanjutan. Loyalitas: Jurnal Pengabdian Kepada Masyarakat, 6(1), 116–127. https://doi.org/10.30739/loyalitas.v6i1.2250
Kusuma, D. H., Ali, M., & Sutantra, N. (2016). The comparison of optimization for active steering control on vehicle using PID controller based on artificial intelligence techniques. In 2016 International Seminar on Application for Technology of Information and Communication (ISemantic) (pp. 18–22). IEEE. https://doi.org/10.1109/ISEMANTIC.2016.7873732
Murtasiyah, M., & Sanafi, M. (2024). Analysis of Employee Safety Behavior at PT BTUB to Achieve Zero Workplace Accidents. Indonesian Journal of Islamic Economics and Finance, 4(2), 451–464. https://doi.org/10.37680/ijief.v4i2.6712
Naseer, W. A., Sarwido, S., & Wahono, B. B. (2024). Gradient boosting optimization with pruning technique for prediction of BMT Al-Hikmah Permata customer data. Jinteks, 6(3), 719–727.
Ningsih, I. Y., Suryaningsih, I. B., Hidayat, M. A., & Lingkungan, P. (2023). Upaya pengolahan sampah plastik menjadi kerajinan bagi ibu rumah tangga. Vol. 4(5), 10365–10368.
Sholahuddin, M. R., et al. (2023). Optimizing YOLOv8 for real-time CCTV surveillance: A trade-off between speed and accuracy. Jurnal Online Informatika, 8(2), 261–270. https://doi.org/10.15575/join.v8i2.1196
SIPSN. (2024, May 7). https://sipsn.menlhk.go.id/sipsn/
Tahol, T. O., Susandini, A., & Hadyarti, V. (2024). The Impact of Financial Inclusion and Technology Digitalization on The Development of The Creative Economy in Pamekasan. Indonesian Journal of Islamic Economics and Finance, 4(2), 317–336. https://doi.org/10.37680/ijief.v4i2.6357
Terven, J., Córdova-Esparza, D. M., & Romero-González, J. A. (2023). A comprehensive review of YOLO architectures in computer vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Machine Learning and Knowledge Extraction, 5(4), 1680–1716. https://doi.org/10.3390/make5040083
Tran, T. K., Huynh, K. T., Le, D. N., Arif, M., & Dinh, H. M. (2023). A deep trash classification model on Raspberry Pi 4. Intelligent Automation & Soft Computing, 35(2), 2479–2491. https://doi.org/10.32604/iasc.2023.029078
Utami, A. P., Pane, N. N. A., & Hasibuan, A. (2023). Analisis dampak limbah/sampah rumah tangga terhadap pencemaran lingkungan hidup. Cross-Border, 6(2), 1107–1112.
Wijanarko, R. G., Pradana, A. I., & Hartanti, D. (2024). Implementasi deteksi drone menggunakan YOLO (You Only Look Once). Vol. 14(2), 437–442.
Yorino, N., Priyadi, A., Kakui, H., & Takeshita, M. (2010). A new method for obtaining critical clearing time for transient stability. IEEE Transactions on Power Systems, 25(3), 1620–1626.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Rasyid Ridha, Syafrijon Syafrijon, Yeka Hendriyani, Ahmaddul Hadi

This work is licensed under a Creative Commons Attribution 4.0 International License.




